Overexpression of Thellungiella halophila H+-pyrophosphatase Gene Improves Low Phosphate Tolerance in Maize
نویسندگان
چکیده
Low phosphate availability is a major constraint on plant growth and agricultural productivity. Engineering a crop with enhanced low phosphate tolerance by transgenic technique could be one way of alleviating agricultural losses due to phosphate deficiency. In this study, we reported that transgenic maize plants that overexpressed the Thellungiella halophila vacuolar H(+)-pyrophosphatase gene (TsVP) were more tolerant to phosphate deficit stress than the wild type. Under phosphate sufficient conditions, transgenic plants showed more vigorous root growth than the wild type. When phosphate deficit stress was imposed, they also developed more robust root systems than the wild type, this advantage facilitated phosphate uptake, which meant that transgenic plants accumulated more phosphorus. So the growth and development in the transgenic maize plants were not damaged as much as in the wild type plants under phosphate limitation. Overexpression of TsVP increased the expression of genes involved in auxin transport, which indicated that the development of larger root systems in transgenic plants might be due in part to enhanced auxin transport which controls developmental events in plants. Moreover, transgenic plants showed less reproductive development retardation and a higher grain yield per plant than the wild type plants when grown in a low phosphate soil. The phenotypes of transgenic maize plants suggested that the overexpression of TsVP led to larger root systems that allowed transgenic maize plants to take up more phosphate, which led to less injury and better performance than the wild type under phosphate deficiency conditions. This study describes a feasible strategy for improving low phosphate tolerance in maize and reducing agricultural losses caused by phosphate deficit stress.
منابع مشابه
Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance.
Salinity is one of the major environmental factors limiting plant growth and productivity. An H(+)-PPase gene, TsVP from Thellungiella halophila, was transferred into cotton (Gossypium hirsutum) in sense and antisense orientations under control of the cauliflower mosaic virus (CaMV) 35S promoter. Southern and Northern blotting analysis showed that the sense or antisense TsVP were integrated int...
متن کاملCloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance.
An H(+)-pyrophosphatase (PPase) gene named TsVP involved in basic biochemical and physiological mechanisms was cloned from Thellungiella halophila. The deduced translation product has similar characteristics to H(+)-PPases from other species, such as Arabidopsis and rice, in terms of bioinformation. The heterologous expression of TsVP in the yeast mutant ena1 suppressed Na(+) hypersensitivity a...
متن کاملMolecular Evolutionary Analysis of the Alfin-Like Protein Family in Arabidopsis lyrata, Arabidopsis thaliana, and Thellungiella halophila
In previous studies, the Alfin1 gene, a transcription factor, enhanced salt tolerance in alfalfa, primarily through altering gene expression levels in the root. Here, we examined the molecular evolution of the Alfin-like (AL) proteins in two Arabidopsis species (A. lyrata and A. thaliana) and a salt-tolerant close relative Thellungiella halophila. These AL-like proteins could be divided into fo...
متن کاملCloning and characterization of a flowering time gene from Thellungiella halophila.
Thellungiella halophila (T. halophila) (salt cress) is a close relative of Arabidopsis and a model plant for salt tolerance research. However, the nature of its later flowering causes some difficulties in genetic analysis. The FRIGIDA (FRI) gene plays a key role in the Arabidopsis vernalization flowering pathway, whose homolog in T. halophila may also be a key factor in controlling flowering ti...
متن کاملComparative sequence analysis of the SALT OVERLY SENSITIVE1 orthologous region in Thellungiella halophila and Arabidopsis thaliana.
To provide a framework for studies to understand the contribution of SALT OVERLY SENSITIVE1 (SOS1) to salt tolerance in Thellungiella halophila, we sequenced and annotated a 193-kb T. halophila BAC containing a putative SOS1 locus (ThSOS1) and compared the sequence to the orthologous 146-kb region of the genome of its salt-sensitive relative, Arabidopsis thaliana. Overall, the two sequences wer...
متن کامل